Flume环境部署和配置详解及案例大全

  一、什么是Flume?
  flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。
 
flume的特点:
  flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
  flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
 
flume的可靠性
  当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。
 
flume的可恢复性:
  还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。
 
  flume的一些核心概念:
Agent使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
Client生产数据,运行在一个独立的线程。
Source从Client收集数据,传递给Channel。
Sink从Channel收集数据,运行在一个独立线程。
Channel连接 sources 和 sinks ,这个有点像一个队列。
Events可以是日志记录、 avro 对象等。
 
  Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成,如下图:

Flume环境部署和配置详解及案例大全 Linux 第1张

  值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如下图所示:

Flume环境部署和配置详解及案例大全 Linux 第2张

  二、flume的官方网站在哪里?
  

  三、在哪里下载?

  

  四、如何安装?
    1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧

    2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置

  root@m1:/home/hadoop/flume-1.5.0-bin# cp conf/flume-env.sh.template conf/flume-env.sh  root@m1:/home/hadoop/flume-1.5.0-bin# vi conf/flume-env.sh  # Licensed to the Apache Software Foundation (ASF) under one  # or more contributor license agreements. See the NOTICE file  # distributed with this work for additional information  # regarding copyright ownership. The ASF licenses this file  # to you under the Apache License, Version 2.0 (the  # "License"); you may not use this file except in compliance  # with the License. You may obtain a copy of the License at  #  #   http://www.apache.org/licenses/LICENSE-2.0  #  # Unless required by applicable law or agreed to in writing, software  # distributed under the License is distributed on an "AS IS" BASIS,  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  # See the License for the specific language governing permissions and  # limitations under the License.     # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced  # during Flume startup.     # Enviroment variables can be set here.     JAVA_HOME=/usr/lib/jvm/java-7-oracle     # Give Flume more memory and pre-allocate, enable remote monitoring via JMX  #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote"     # Note that the Flume conf directory is always included in the classpath.  #FLUME_CLASSPATH=""       

    3)验证是否安装成功

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version  Flume 1.5.0  Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git  Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97  Compiled by hshreedharan on Wed May 7 14:49:18 PDT 2014  From source with checksum a01fe726e4380ba0c9f7a7d222db961f  root@m1:/home/hadoop#  

    出现上面的信息,表示安装成功了
 
 
  五、flume的案例
    1)案例1:Avro
    Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。
      a)创建agent配置文件

  root@m1:/home/hadoop#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf     a1.sources = r1  a1.sinks = k1  a1.channels = c1     # Describe/configure the source  a1.sources.r1.type = avro  a1.sources.r1.channels = c1  a1.sources.r1.bind = 0.0.0.0  a1.sources.r1.port = 4141     # Describe the sink  a1.sinks.k1.type = logger     # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100     # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console  

      c)创建指定文件

  root@m1:/home/hadoop# echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00  

      d)使用avro-client发送文件

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00  

      f)在m1的控制台,可以看到以下信息,注意最后一行:

  root@m1:/home/hadoop/flume-1.5.0-bin/conf# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console  Info: Sourcing environment configuration script /home/hadoop/flume-1.5.0-bin/conf/flume-env.sh  Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.2.0/bin/hadoop) for HDFS access  Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath  Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath  ...  -08-10 10:43:25,112 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND  -08-10 10:43:25,112 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED  -08-10 10:43:25,112 (New I/O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected.  -08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64        hello world }  

    2)案例2:Spool
    Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:
    1) 拷贝到spool目录下的文件不可以再打开编辑。
    2) spool目录下不可包含相应的子目录
      a)创建agent配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = spooldir  a1.sources.r1.channels = c1  a1.sources.r1.spoolDir = /home/hadoop/flume-1.5.0-bin/logs  a1.sources.r1.fileHeader = true  # Describe the sink  a1.sinks.k1.type = logger  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console  

      c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录

  root@m1:/home/hadoop# echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log  

      d)在m1的控制台,可以看到以下相关信息:

  /08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file /home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.COMPLETED  /08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:14 INFO sink.LoggerSink: Event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31        spool test1 }  /08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  /08/10 11:37:17 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.  

    3)案例3:Exec
    EXEC执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容
      a)创建agent配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = exec  a1.sources.r1.channels = c1  a1.sources.r1.command = tail -F /home/hadoop/flume-1.5.0-bin/log_exec_tail  # Describe the sink  a1.sinks.k1.type = logger  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console  

      c)生成足够多的内容在文件里

  root@m1:/home/hadoop# for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done  

      e)在m1的控制台,可以看到以下信息:

  -08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74    exec tail test }  -08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74    exec tail test }  -08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31          exec tail1 }  -08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32          exec tail2 }  -08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33          exec tail3 }  -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34          exec tail4 }  -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35          exec tail5 }  -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36          exec tail6 }  ....  ....  ....  -08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36        exec tail96 }  -08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37        exec tail97 }  -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38        exec tail98 }  -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39        exec tail99 }  -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30       exec tail100 }  

    4)案例4:Syslogtcp
    Syslogtcp监听TCP的端口做为数据源
      a)创建agent配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5140  a1.sources.r1.host = localhost  a1.sources.r1.channels = c1  # Describe the sink  a1.sinks.k1.type = logger  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console  

      c)测试产生syslog

  root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140  

      d)在m1的控制台,可以看到以下信息:

  /08/10 11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf  /08/10 11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1  /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1  /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1  /08/10 11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [a1]  /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Creating channels  /08/10 11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type memory  /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1  /08/10 11:41:45 INFO source.DefaultSourceFactory: Creating instance of source r1, type syslogtcp  /08/10 11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type: logger  /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1]  /08/10 11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }  /08/10 11:41:45 INFO node.Application: Starting Channel c1  /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.  /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started  /08/10 11:41:45 INFO node.Application: Starting Sink k1  /08/10 11:41:45 INFO node.Application: Starting Source r1  /08/10 11:41:45 INFO source.SyslogTcpSource: Syslog TCP Source starting...  /08/10 11:42:15 WARN source.SyslogUtils: Event created from Invalid Syslog data.  /08/10 11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }  

    5)案例5:JSONHandler
      a)创建agent配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = org.apache.flume.source.http.HTTPSource  a1.sources.r1.port = 8888  a1.sources.r1.channels = c1  # Describe the sink  a1.sinks.k1.type = logger  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console  

      c)生成JSON 格式的POST request

  root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888  

      d)在m1的控制台,可以看到以下信息:
/

  08/10 11:49:59 INFO node.Application: Starting Channel c1  /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.  /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started  /08/10 11:49:59 INFO node.Application: Starting Sink k1  /08/10 11:49:59 INFO node.Application: Starting Source r1  /08/10 11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog  /08/10 11:49:59 INFO mortbay.log: jetty-6.1.26  /08/10 11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888  /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.  /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started  /08/10 12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79  idoall.org_body }  

    6)案例6:Hadoop sink
    其中关于hadoop2.2.0部分的安装部署,请参考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》
      a)创建agent配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5140  a1.sources.r1.host = localhost  a1.sources.r1.channels = c1  # Describe the sink  a1.sinks.k1.type = hdfs  a1.sinks.k1.channel = c1  a1.sinks.k1.hdfs.path = hdfs://m1:9000/user/flume/syslogtcp  a1.sinks.k1.hdfs.filePrefix = Syslog  a1.sinks.k1.hdfs.round = true  a1.sinks.k1.hdfs.roundValue = 10  a1.sinks.k1.hdfs.roundUnit = minute  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console  

      c)测试产生syslog

  root@m1:/home/hadoop# echo "hello idoall flume -> hadoop testing one" | nc localhost 5140  

      d)在m1的控制台,可以看到以下信息:

  /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.  /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started  /08/10 12:20:39 INFO node.Application: Starting Sink k1  /08/10 12:20:39 INFO node.Application: Starting Source r1  /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SINK, name: k1: Successfully registered new MBean.  /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started  /08/10 12:20:39 INFO source.SyslogTcpSource: Syslog TCP Source starting...  /08/10 12:21:46 WARN source.SyslogUtils: Event created from Invalid Syslog data.  /08/10 12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false  /08/10 12:21:49 INFO hdfs.BucketWriter: Creating hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp  /08/10 12:22:20 INFO hdfs.BucketWriter: Closing hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp  /08/10 12:22:20 INFO hdfs.BucketWriter: Close tries incremented  /08/10 12:22:20 INFO hdfs.BucketWriter: Renaming hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504  /08/10 12:22:20 INFO hdfs.HDFSEventSink: Writer callback called.  

      e)在m1上再打开一个窗口,去hadoop上检查文件是否生成

  root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp  Found 1 items  -rw-r--r--  3 root supergroup    155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog.1407644509504  root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504  SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one  

    7)案例7:File Roll Sink
      a)创建agent配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5555  a1.sources.r1.host = localhost  a1.sources.r1.channels = c1  # Describe the sink  a1.sinks.k1.type = file_roll  a1.sinks.k1.sink.directory = /home/hadoop/flume-1.5.0-bin/logs  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      b)启动flume agent a1

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console  

      c)测试产生log

  root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5555  root@m1:/home/hadoop# echo "hello idoall.org syslog 2" | nc localhost 5555  

      d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件

  root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs  总用量 272  drwxr-xr-x 3 root root  4096 Aug 10 12:50 ./  drwxr-xr-x 9 root root  4096 Aug 10 10:59 ../  -rw-r--r-- 1 root root   50 Aug 10 12:49 1407646164782-1  -rw-r--r-- 1 root root   0 Aug 10 12:49 1407646164782-2  -rw-r--r-- 1 root root   0 Aug 10 12:50 1407646164782-3  root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2  hello idoall.org syslog  hello idoall.org syslog 2  

    8)案例8:Replicating Channel Selector
    Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
    这次我们需要用到m1,m2两台机器
      a)在m1创建replicating_Channel_Selector配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf  a1.sources = r1  a1.sinks = k1 k2  a1.channels = c1 c2  # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5140  a1.sources.r1.host = localhost  a1.sources.r1.channels = c1 c2  a1.sources.r1.selector.type = replicating  # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.channel = c1  a1.sinks.k1.hostname = m1  a1.sinks.k1.port = 5555  a1.sinks.k2.type = avro  a1.sinks.k2.channel = c2  a1.sinks.k2.hostname = m2  a1.sinks.k2.port = 5555  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  a1.channels.c2.type = memory  a1.channels.c2.capacity = 1000  a1.channels.c2.transactionCapacity = 100    

      b)在m1创建replicating_Channel_Selector_avro配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = avro  a1.sources.r1.channels = c1  a1.sources.r1.bind = 0.0.0.0  a1.sources.r1.port = 5555  # Describe the sink  a1.sinks.k1.type = logger  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      c)在m1上将2个配置文件复制到m2上一份

  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br>  

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console  

      e)然后在m1或m2的任意一台机器上,测试产生syslog

  root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140  

      f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:

  /08/10 14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected.  /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN  /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555  /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873  /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN  /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555  /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858  /08/10 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }  

    
                 9)案例9:Multiplexing Channel Selector
      a)在m1创建Multiplexing_Channel_Selector配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf  a1.sources = r1  a1.sinks = k1 k2  a1.channels = c1 c2  # Describe/configure the source  a1.sources.r1.type = org.apache.flume.source.http.HTTPSource  a1.sources.r1.port = 5140  a1.sources.r1.channels = c1 c2  a1.sources.r1.selector.type = multiplexing  a1.sources.r1.selector.header = type  #映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。  a1.sources.r1.selector.mapping.baidu = c1  a1.sources.r1.selector.mapping.ali = c2  a1.sources.r1.selector.default = c1  # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.channel = c1  a1.sinks.k1.hostname = m1  a1.sinks.k1.port = 5555  a1.sinks.k2.type = avro  a1.sinks.k2.channel = c2  a1.sinks.k2.hostname = m2  a1.sinks.k2.port = 5555  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  a1.channels.c2.type = memory  a1.channels.c2.capacity = 1000  a1.channels.c2.transactionCapacity = 100  

      b)在m1创建Multiplexing_Channel_Selector_avro配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf  a1.sources = r1  a1.sinks = k1  a1.channels = c1  # Describe/configure the source  a1.sources.r1.type = avro  a1.sources.r1.channels = c1  a1.sources.r1.bind = 0.0.0.0  a1.sources.r1.port = 5555  # Describe the sink  a1.sinks.k1.type = logger  # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      c)将2个配置文件复制到m2上一份

  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf  

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console  

      e)然后在m1或m2的任意一台机器上,测试产生syslog

  root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140  

      f)在m1的sink窗口,可以看到以下信息:

  14/08/10 14:32:21 INFO node.Application: Starting Sink k1  14/08/10 14:32:21 INFO node.Application: Starting Source r1  14/08/10 14:32:21 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...  14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.  14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started  14/08/10 14:32:21 INFO source.AvroSource: Avro source r1 started.  14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN  14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555  14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916  14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN  14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555  14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945  14/08/10 14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31       idoall_TEST1 }  14/08/10 14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33       idoall_TEST3 }  

      g)在m2的sink窗口,可以看到以下信息:

  14/08/10 14:32:27 INFO node.Application: Starting Sink k1  14/08/10 14:32:27 INFO node.Application: Starting Source r1  14/08/10 14:32:27 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...  14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.  14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started  14/08/10 14:32:27 INFO source.AvroSource: Avro source r1 started.  14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN  14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555  14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104  14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN  14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555  14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599  14/08/10 14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32       idoall_TEST2 }  

    可以看到,根据header中不同的条件分布到不同的channel上
 
    10)案例10:Flume Sink Processors
    failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。
 
      a)在m1创建Flume_Sink_Processors配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf     a1.sources = r1  a1.sinks = k1 k2  a1.channels = c1 c2     #这个是配置failover的关键,需要有一个sink group  a1.sinkgroups = g1  a1.sinkgroups.g1.sinks = k1 k2  #处理的类型是failover  a1.sinkgroups.g1.processor.type = failover  #优先级,数字越大优先级越高,每个sink的优先级必须不相同  a1.sinkgroups.g1.processor.priority.k1 = 5  a1.sinkgroups.g1.processor.priority.k2 = 10  #设置为10秒,当然可以根据你的实际状况更改成更快或者很慢  a1.sinkgroups.g1.processor.maxpenalty = 10000     # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5140  a1.sources.r1.channels = c1 c2  a1.sources.r1.selector.type = replicating        # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.channel = c1  a1.sinks.k1.hostname = m1  a1.sinks.k1.port = 5555     a1.sinks.k2.type = avro  a1.sinks.k2.channel = c2  a1.sinks.k2.hostname = m2  a1.sinks.k2.port = 5555     # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100     a1.channels.c2.type = memory  a1.channels.c2.capacity = 1000  a1.channels.c2.transactionCapacity = 100  

      b)在m1创建Flume_Sink_Processors_avro配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf     a1.sources = r1  a1.sinks = k1  a1.channels = c1     # Describe/configure the source  a1.sources.r1.type = avro  a1.sources.r1.channels = c1  a1.sources.r1.bind = 0.0.0.0  a1.sources.r1.port = 5555     # Describe the sink  a1.sinks.k1.type = logger     # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100     # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      c)将2个配置文件复制到m2上一份

  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf  

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console  

      e)然后在m1或m2的任意一台机器上,测试产生log

  root@m1:/home/hadoop# echo "idoall.org test1 failover" | nc localhost 5140  

      f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:

  14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected.  14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN  14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555  14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704  14/08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }  

      g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:

  root@m1:/home/hadoop# echo "idoall.org test2 failover" | nc localhost 5140  

      h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:

  14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected.  14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN  14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555  14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048  14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }  14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }  

      i)我们再在m2的sink窗口中,启动sink:

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console  

      j)输入两批测试数据:

  root@m1:/home/hadoop# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140  

     k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:

  14/08/10 15:09:47 INFO node.Application: Starting Sink k1  14/08/10 15:09:47 INFO node.Application: Starting Source r1  14/08/10 15:09:47 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...  14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.  14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started  14/08/10 15:09:47 INFO source.AvroSource: Avro source r1 started.  14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN  14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555  14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741  14/08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }  14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN  14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555  14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166  14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }  14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }  

 
    11)案例11:Load balancing Sink Processor
    load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。
 
      a)在m1创建Load_balancing_Sink_Processors配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf     a1.sources = r1  a1.sinks = k1 k2  a1.channels = c1     #这个是配置Load balancing的关键,需要有一个sink group  a1.sinkgroups = g1  a1.sinkgroups.g1.sinks = k1 k2  a1.sinkgroups.g1.processor.type = load_balance  a1.sinkgroups.g1.processor.backoff = true  a1.sinkgroups.g1.processor.selector = round_robin     # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5140  a1.sources.r1.channels = c1        # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.channel = c1  a1.sinks.k1.hostname = m1  a1.sinks.k1.port = 5555     a1.sinks.k2.type = avro  a1.sinks.k2.channel = c1  a1.sinks.k2.hostname = m2  a1.sinks.k2.port = 5555     # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100  

      b)在m1创建Load_balancing_Sink_Processors_avro配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf     a1.sources = r1  a1.sinks = k1  a1.channels = c1     # Describe/configure the source  a1.sources.r1.type = avro  a1.sources.r1.channels = c1  a1.sources.r1.bind = 0.0.0.0  a1.sources.r1.port = 5555     # Describe the sink  a1.sinks.k1.type = logger     # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100     # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      c)将2个配置文件复制到m2上一份

  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf  root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf  

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console  root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console  

      e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上

  root@m1:/home/hadoop# echo "idoall.org test1" | nc localhost 5140  root@m1:/home/hadoop# echo "idoall.org test2" | nc localhost 5140  root@m1:/home/hadoop# echo "idoall.org test3" | nc localhost 5140  root@m1:/home/hadoop# echo "idoall.org test4" | nc localhost 5140  

      f)在m1的sink窗口,可以看到以下信息:

  14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }  14/08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }  

      g)在m2的sink窗口,可以看到以下信息:

  14/08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }  14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }  

    说明轮询模式起到了作用。
 
    12)案例12:Hbase sink
 
      a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动
 
      b)然后将以下文件复制到flume中:

  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/protobuf-java-2.5.0.jar /home/hadoop/flume-1.5.0-bin/lib  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-client-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-common-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-protocol-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-server-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop2-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib@@@  cp /home/hadoop/hbase-0.96.2-hadoop2/lib/htrace-core-2.04.jar /home/hadoop/flume-1.5.0-bin/lib  

      c)确保test_idoall_org表在hbase中已经存在,test_idoall_org表的格式以及字段请参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。
 
      d)在m1创建hbase_simple配置文件

  root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf     a1.sources = r1  a1.sinks = k1  a1.channels = c1     # Describe/configure the source  a1.sources.r1.type = syslogtcp  a1.sources.r1.port = 5140  a1.sources.r1.host = localhost  a1.sources.r1.channels = c1     # Describe the sink  a1.sinks.k1.type = logger  a1.sinks.k1.type = hbase  a1.sinks.k1.table = test_idoall_org  a1.sinks.k1.columnFamily = name  a1.sinks.k1.column = idoall  a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer  a1.sinks.k1.channel = memoryChannel     # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100     # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1  

      e)启动flume agent

  /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf -n a1 -Dflume.root.logger=INFO,console  

      f)测试产生syslog

  root@m1:/home/hadoop# echo "hello idoall.org from flume" | nc localhost 5140  

      g)这时登录到hbase中,可以发现新数据已经插入

  root@m1:/home/hadoop# /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell  2014-08-10 16:09:48,984 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available  HBase Shell; enter 'help<RETURN>' for list of supported commands.  Type "exit<RETURN>" to leave the HBase Shell  Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014     hbase(main):001:0> list  TABLE                                                                                                           SLF4J: Class path contains multiple SLF4J bindings.  SLF4J: Found binding in [jar:file:/home/hadoop/hbase-0.96.2-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]  SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]  SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.  hbase2hive_idoall                                                                                                     hive2hbase_idoall                                                                                                     test_idoall_org                                                                                                      3 row(s) in 2.6880 seconds     => ["hbase2hive_idoall", "hive2hbase_idoall", "test_idoall_org"]  hbase(main):002:0> scan "test_idoall_org"  ROW                          COLUMN+CELL                                                                              10086                         column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                   1 row(s) in 0.0550 seconds     hbase(main):003:0> scan "test_idoall_org"  ROW                          COLUMN+CELL                                                                              10086                         column=name:idoall, timestamp=1406424831473, value=idoallvalue                                                    1407658495588-XbQCOZrKK8-0              column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume                                           2 row(s) in 0.0200 seconds     hbase(main):004:0> quit  

    经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。
 
    这篇文章做为一个笔记,希望能够对刚入门的同学起到帮助作用。

参与评论